Weighted Non-Linear Diffusion Filtering with Wavelet Thresholding in Image Denoising
نویسندگان
چکیده
Wavelet based image denoising is an important technique in the area of image noise reduction. In this paper, a new adaptive wavelet based image denoising algorithm in the presence of Gaussian noise is developed. In the existing wavelet thresholding methods, the final noise reduced image has limited improvement. It is due to keeping the approximate wavelet coefficients unchanged. Since noise affects both approximate as well as detail coefficients, the proposed technique incorporates methods to eliminate noise in both types of coefficients. The propose technique is applied in two phases. In the first phase, an adaptive data driven threshold for image denoising via wavelet soft-thresholding is applied on detail coefficients. In the second phase of the proposed algorithm, anisotropic diffusion is applied on approximate coefficients. In this context, a weighted diffusivity function is proposed which incorporates contextual discontinuities in the image. The diffusivity function derived is applied depending on local image features and hence improve the capability of feature preservation along with noise removal. The proposed technique was applied on standard noisy image and the results obtained show the superiority of the method over other wavelet based denoising techniques. General Terms Image denoising, anisotropic diffusion
منابع مشابه
Denoising of Rician noise in Magnitude MRI Images using wavelet shrinkage and fusion method
Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising techniques could enhance their value, provided that signal statistics and image resolution are not compromised. Here, a new denoising method based on wavelet based bayes shrinkage method of the measured noise power from each signal acquisition is presented. Bayes shrink method denoising assumes no prio...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملNonlinear Filtering in ECG Signal Denoising
This paper presents a non-linear filtering method based on the multiresolution analysis of the Discrete Wavelet Transform (DWT). The main idea is to use the time-frequency localization properties of the wavelet decomposition. The proposed algorithm is using an extra decomposition of the identified noise in order to reduce the correlation between the electrocardiogram (ECG) signal and noise. The...
متن کاملA Comparative Study on Medical Image Denoising in Hybrid domain
The key to medical image denoising technique is to remove the noise while preserving important features. Non-local mean filtering and bilateral filtering are commonly used procedures for medical image denoising. In this paper analysis and comparison of spatial as well as frequency domain methods including bilateral filtering , non-local mean filtering, wavelet thresholding, contourlet threshold...
متن کاملImage Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013